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Abstract

In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can
lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe
these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén
physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. The-
sis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic
model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D.
Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid
moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model,
that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic pertur-
bation due to the energetic particles and background kinetic effects.

Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and compre-
hensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the
radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits
is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D.
Pinches et al., CPC 111 (1998) 131] which accurately describes the particles’ trajectories. This allows finite-banana-width
effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unper-
turbed orbit integration and the discretisation of the perturbed potentials in the radial direction.

Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical
results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.
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1. Introduction

The closer magnetic fusion experiments approach ignition the more interest and concern is attracted by
super-thermal particles and their effect on stability and transport. Especially large scale MHD instabilities
are among the most dangerous modes for future fusion devices. Due to their global structure they can effi-
ciently tap energy from the free gradients of the fast particle distribution, grow to large amplitudes, expell
hot particles and thus decrease the heating efficiency and cause damage to the first wall.

These modes usually have frequencies in the range of the plasma’s Alfvén frequency (for typical parameters
�106/s) i.e. well below the ion cyclotron frequency (�108/s). A large scale structure means that these pertur-
bations have low m (poloidal) and low n (toroidal) mode numbers . Therefore, they cannot be described locally
or in the ballooning (i.e. high-n) approximation [7].

When the properties of an ignited plasma are predicted, especially toroidal Alfvén eigenmodes modes
(TAEs) attract increasing interest: TAEs can be excited in ‘gaps’ that are caused by the break up of the con-
tinuous Alfvén spectrum due to toroidal coupling. In such a gap, there is no continuum damping present. This
allows the existence of global modes [13,14] that can be driven to large amplitudes by passing or trapped ener-
getic ions [16] with dangerous consequences to confinement and stability.

The traditional description with ideal MHD codes cannot take into account kinetic effects such as wave-
particle interaction, finite-Larmor-radius (FLR) and parallel electric field effects which are crucial to determine
the mode stability [17,11]. In order to include these kinetic effects, hybrid models were used extensively: for hot
particles, the gradient rP term is replaced by rðP þ P hotÞ derived from the kinetic equations. This leads to an
extension of the energy principle and this extended system is then solved in a perturbative way, i.e. only the
eigenvalue and not the eigenfunction is allowed to change. The most important numerical codes based on this
model are CASTOR-K [18] and NOVA-K [15], the extensions of the resistive MHD spectral stability codes
CASTOR [26] resp. NOVA. Furthermore, a complex resisity model has been employed [20] to describe back-
ground kinetic effects with CASTOR-K.

This perturbative treatment is only valid for small fast particle pressures and for cases where there is no cou-
pling to small-scale modes. Therefore, non-perturbative models are required to explain discrepancies that have
been found between experimental data and the predicitons of perturbative codes. Also modes that only exist in
the presence of fast particles, energetic particle modes (EPMs), demand this non-perturbative treatment.

On the non-perturbative side, there is the dielectric tensor model [27] and its numerical implementation
PENN [21]. With this code it has been shown that the non-perturbative treatment indeed becomes crucial
for cases where e.g. radiative damping via coupling the kinetic Alfvén wave (KAW) [11,17,25] is important.
However, some of the results have not been confirmed by other codes or by analytical estimates.

LIGKA [1] is based on a linear, self-consistent, non-perturbative, gyrokinetic model [3–6] which will be
described in Section 2. Compared to the derivation and numerical implementation (KIN2DEM) described
in Refs. [3–6], the equations here are kept more general: some of the analytical expansions as used in KIN2-
DEM are replaced by more accurate numerical evaluations. Also the gyro-operators in the GKM were kept
for consistency.

Section 3 gives a detailed description of the numerical implementation, i.e. the discretisation of the opera-
tors, the evaluation of the propagator integrals, the Landau-resonance-integral problem and the overall strat-
egy for solving this non-linear eigenvalue problem.

Section 4 shows a series of benchmarks with analytical results, ideal-MHD codes, the drift-kinetic CAS3D-
K code and the KIN2DEM code [3].

Finally, conclusions and an outlook to future applications and improvements are given.

2. Model

Based on a linear gyrokinetic formulation, a model consisting of the following three equations was previ-
ously developed [3–6]: the quasi-neutrality equation (QN)
X
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the gyrokinetic moment equation (GKM)
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and the gyrokinetic equation (GKE) itself:
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In these equations,
P

a stands for the summation over the particle species (background ions and electrons, fast
ion population), ea for the particle charge, na and T a for density and temperature, .a for the gyro radius,
J 0 ¼ J 0ðk?.aÞ for the zeroth order Bessel function originating from the gyro-angle average
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d2v for the integration over the two remaining variables in velocity space, vA for the Alfvén velocity, j0k for
the parallel equilibrium current, U for the velocity parallel to the equilibrium magnetic field B, vd for the drift
velocity of the particles, F0 for the equilibrium particle distribution function and H 1 ¼ eaJ 0ð/�

kkU

x wÞ for the
perturbed Hamiltonian.

The unknown variables are the electrostatic potential /, the potential w for the parallel component of the
electromagnetic potential Ak ¼ 1

ixðrwÞk and the perturbed distribution function f. Note that the eigenfre-
quency x appears non-linearly within the propagator and velocity space integrals.

The equations above were derived by setting A? ¼ 0. This simplification together with a low-b assumption
implies that the modes under consideration are almost incompressible shear Alfvén modes with small parallel
magnetic perturbations and small pressure perturbations. For arbitrary b one would have to solve one addi-
tional equation for the perturbed parallel magnetic field dBk as derived in the framework of kinetic ballooning
theory [8]. However, if b is assumed to be small but nevertheless the coupling to the sound waves has to be
kept, a set of two slightly modified equations can be derived which will be reported elsewhere. The present
version of LIGKA neglects the coupling to the sound wave which is a good approximation for the modes
under consideration in this paper.

The GKE is further transformed by substituting [9]:
fa ¼ ha þ H 1;a
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ixB
� ðb�rÞ

� �
J 0w: ð4Þ
This substitution creates terms proportional to /� w that contain the Ek-effects. Close to the MHD-limit, they
become small compared to the x*-term. As shown below, this x*-term gives the lowest order solution of the
GKE, leading to an MHD-like pressure term. Expressions proportional to U vanish during integration over
velocity space, if an equilibrium distribution symmetric in U is chosen. This is true for background species (no
rotation assumed) and typical a-particle distributions. Equations that take into account also asymmetry in U

(e.g. caused by NBI heating) have been derived and will be published elsewhere.
Substituting h in favour of f in the QN and GKM equations, assuming a Maxwellian equilibrium distribu-

tion function F0 and integrating over velocity space results for the QN equation in (the index a is omitted for
simplicity):
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and
v 	 v2
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th ¼ T=m, X2 ¼ eB=m and In as the modified Bessel functions of nth order. Using
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which is true for low-b, and partially carrying out the integration over velocity space, the first term on the
right-hand side of the GKM becomes:
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with G1ðvÞ ¼ vðI1=I0 � 3=2Þ � v2ðI1=I0 � 1Þ. Following Ref. [3], contact to ideal MHD can be established by
leaving out Ek-effects (setting h and /� w zero), going into the zero gyroradius limit (v = 0) and applying
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Then the GKM reads:
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This equation can also be derived starting from the ideal MHD equations [3]. The QN is trivially satisfied in
this limit. When FLR-effects are kept, another limit called the ‘reduced kinetic model’ can be derived [2]. These
two limits will be recovered numerically in the validation and benchmark section of this paper.

Now the expressions proportional to h are further manipulated: using the ansatz
haðt; xÞ ¼ �haðr; hÞeiðnu�xtÞ;
where u and n are the toroidal angle and mode number, the GKE becomes:
�ha ¼ iea

X
m

Z t

�1
dt0ei½nðu0�uÞ�mðh0�hÞ�xðt0�tÞ�e�imh � oF 0;a

oE
ðx� xT

� ÞJ 0 � /mðr0Þ � 1� xdðh0Þ
x

� �
wmðr0Þ

� �
: ð8Þ
Here, a Fourier expansion in the poloidal angle h with the poloidal mode number m has been performed. The
time integral in Eq. (8) has to be carried out along the unperturbed particle orbit, indicated by the primed
quantities t 0, r 0, h 0 and u 0.
2.1. Circulating particles

After expanding into bounce harmonics labelled by the index k, changing to the velocity space coordinates
Y ¼ E=T and K ¼ lB0=E, considering only first order terms for the drifts, integrating over time and applying
the projection operator

R p
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iph, the circulating particle contribution becomes:
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with
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âm;k ¼
1

st

Z st=2

�st=2

d̂t0ei½Smh0�ðkþSmÞxt t̂0 �; âG
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For circulating particles the integration over K has to be carried out from +0 to bminðrÞ ¼ min½bðr; hÞ� ¼
min½B0=Bðr; hÞ�. xt and st are the transit frequency and time, and
x̂� ¼
rF 0 � b

ieB oF 0

oE

� r:
Also the sum over co- and counter-passing particles has been performed already assuming symmetry in veloc-
ity space.

The operator J 2
0½k?ðr; hÞ.� can be treated in three different ways:


 If the mode structure permits, its radial derivatives are completely neglected and only the h-dependent terms
are taken into account. This is how e.g. KIN2DEM is set up. k? simply reduces to ky ¼ �m=r.

 A more accurate way is to use an intermediate result for the eigenfunction: since the eigenvalue is calculated

iteratively, a guess for / and w during run-time is available. As initial guess the pure MHD eigenfunction or
an eigenfunction calculated with the approximation method given above can be employed. Also results
from the ‘antenna’-version of LIGKA [2] can be used.
This method was tested so far only for cases where the eigenfunctions did not have any zero crossings: /00=/
and /0=/ were therefore always a well behaved functions without singularities.

 The operator can be expanded up to second order and the result added to the contributions of the first and

second order derivative coefficients from the MHD part. This treatment will be tested in a future version of
LIGKA.

2.2. Trapped particles

For trapped particles the drift effects due to the drift operator on the left-hand side of the GKE (Eq. (3)) are
taken into account: in a linear description, where the orbit integrals are performed over unperturbed orbits it is
possible to change the order of time integration and the discretisation of the perturbed potentials in radial
direction. Thus, the time integral can be written as a sum of integrals:
Z t
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The index j0 counts the finite element partitions in the radial coordinate: the particle spends the time tj0þ1 � tj0

in the radial bin with number j 0 (see Fig. 1).
Before proceeding, the phase factor
ei½nðu0�uÞ�mðh0�hÞ�xðt0�tÞ�
is rewritten in a more convenient way using the following definitions [10]:
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r0 is the orbit averaged radial position of a particle.



t1

t2 t3

t4
t5

t0

0 1 2 3 4

Fig. 1. The orbit for trapped particles is split up in pieces corresponding to the finite element discretisation.
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W ¼ W ðtÞ ¼
Z t
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0
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D:
The time integration has to be started at t0 ! �1. Taking into consideration that the orbit motion is periodic,
one obtains:
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where the relation
X1
j¼0

eixj ¼ 1
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was used. It can be easily verified that for N = 1, tj ¼ 0 and tjþ1 ¼ sb, expression (11) simplifies to the zero-
orbit-width result: �1=iðx� x0

D � kxbÞ. Now we can integrate h over the velocity space and over h, like above
for circulating particles .

Therefore, the final expression for trapped particles is:
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It should be noted that contrary to the perturbed potentials /, w and the quantities in the propagator, the
equilibrium quantities F0, �xd and x̂� are assumed to stay constant in the radial coordinate along a particle
orbit.

Finally, in the GKM equation, an integral of the form
Z
ie

vd

x
� rJ 0hd3v ð13Þ
has to be performed.
Furthermore, in the expression for h there is also a term proportional to xdðrÞ 	 vd=i � r:
âkm/mðrjÞ � âkm �
âG
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x
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� �
:

This drift operator entails radial derivatives of w and /. In principle, these derivatives could be included is the
system using a similar procedure as described before for J0. But due to the smallness of _r (one order of
� ¼ a=R0 smaller) compared to _h and _u, xd is replaced by xD ¼ _u� qðr0Þ _h. This simplification is not justified,
when very low frequencies, close to the sound frequency are investigated since the second order derivatives of
x2

d are needed e.g. for the geodesic acoustic correction of the Alfvén continuum [12]. Equations suited for this
limit have been recently derived and will be reported elsewhere. In this work, only high frequency phenomena
(compared to the sound frequency) are investigated.

Finally, line (13) can be rewritten as:
Z p

�p

dh
2p

eiph

Z
iea

vd

x
� rJ 0h d3v

� �trap

¼ �pe2
av3

th

X
m

X
j

Z bmaxðrÞ

bminðrÞ
dK
Z 1

0

dY
ffiffiffiffi
Y
p oF 0

oE

X
k

�Rkj � KG
kp

� x� x̂�
x� x0

D � kxb
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As before,
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Now our system of equations is complete consisting of the QN (5) and the GKM (2), (6) together with the
integrals (9), (12), (14) and (15).
3. Numerical implementation

In this section the structure of the numerical implementation and details of the methods involved are
described.

As sketched in Fig. 2, we start from an equilibrium given analytically or numerically. At present, there
exists an interface for the equilibrium code HELENA [26]. Also HAGIS [23,24], a Monte-Carlo code in a
guiding centre Hamiltonian formulation, usually applied for non-linear wave-particle interaction, can use
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Fig. 2. Survey of different codes involved.
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HELENA equilibria as input. Before one starts to run LIGKA itself one computes the integrals over the
unperturbed particle orbits with HAGIS based on a given equilibrium, i.e. one calculates for each m, p, k,
r, Y and K the integrals akm, Kmpk, Kpk and the corresponding aG

km, KG
mpk, KG

pk. For a typical run with five poloi-
dally coupled mode numbers this means approximately one gigabyte of data per species. To be able to choose
the points in velocity space in an advantageous way, i.e.more points near the trapped-passing boundary,
HAGIS is called iteratively to provide a grid in velocity space on which the required integrals are calculated
in a separate step.

For calculating the drift orbit averages that determine the wave-particle resonances, no gyro orbit effects
are taken into account. This is a reasonable approximation because firstly the 6-d unperturbed trajectory only
differs slightly from the drift kinetic one, at least in an ITER, JET or ASDEX-Upgrade like device. Secondly,
for the wave-particle energy transfer it is more crucial to capture numerically the fact that there is a pole rather
than its exact position in the complex plane. Thus, as long as the deviations of 6-d and 5-d trajectories are not
too large with respect to background quantities, the resonance integrals in the guiding centre approximation
are very accurate. The differential operators are calculated with a general vector algebra package [3] based on
MATHEMATICA, allowing for a fast and flexible change between different geometries (cylindrical, straight
tokamak, tokamak, circular, shaped).

3.1. Finite element discretisation

As indicated in the last section, LIGKA employs a Fourier decomposition in the toroidal and poloidal
angle and finite elements of length l with cubic Hermite polynomials as basis function in the radial coordinate
x:
1� 3x2

l2
þ 2x3

l3
; x� 2x2

l
þ x3

l2
;
3x2

l2
� 2x3

l3
;
x3

l2
� x2

l

� �
: ð16Þ
As coordinate system straight field line flux coordinates with s ¼
ffiffiffiffi
W
p

(poloidal flux) are chosen. The toroidal
angle is chosen as the geometric angle. The field lines are straight, but not field-aligned. The total matrix is set
up using the Galerkin method: the solution is approximated by
/mðrÞ ¼
XN

j¼1

/mjujðxÞ; wmðrÞ ¼
XN

j¼1

wmjujðxÞ:
This expansion is substituted into the differential equation and weighted with the basis functions (here given
just for /):
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Z
plasma

dxRðxÞukðxÞ ¼ 0
with
RðxÞ ¼ Apm

XN

j¼1

/mjujðxÞ
" #00

þ Bpm

XN

j¼1

/mjujðxÞ
" #0

þ Cpm

XN

j¼1

/mjujðxÞ:
The goal is now to find a set of ukðxÞ so that the integral above is zero for some choices of the weight functions.
By carrying out a partial integration one can transform the differential equations into algebraic ones.

As boundary conditions one imposes that the perturbed potentials for all poloidal harmonics vanish at the
plasma centre (except the m = 0-component) and at the outermost flux surface. This is introduced in the sys-
tem by deleting the first column and the first row as well as the last-but-one column and row for each m-block.
Finally, a matrix as graphically described in Fig. 3 is formed.

The basic convergence is checked for an ideal MHD case, where the system is linear in the eigenvalue, and a
standard NAG routine can be applied for solving the matrix equation A/ ¼ kB/. As shown in Fig. 4, green
line,1 the relative error of the eigenvalue scales like l�5 where l is the length of a finite element and an equi-
distant grid was chosen. This convergence rate has also been found by other codes based on finite elements
[26]. The case shown in Fig. 4 is an internal kink mode that has a localised structure at the q = 1 surface. This
is the reason why with an equidistant grid a l�5-convergence can only be found for 100 radial grid points or
more (green line1 in Fig. 4). LIGKA allows also for mesh accumulation, resulting in a much faster conver-
gence if more points close to the q = 1 surface are chosen (red dots1 in Fig. 4).

3.2. Propagator integrals

The bounce and drift frequencies and propagator integrals calculated with HAGIS were benchmarked
against analytical formulae, given in [3]. One can see that as expected, for low-energy ions (and of course also
electrons, not shown here) the analytical results are recovered accurately (see Fig. 5). For trapped a-particles
the analytical expressions become inaccurate and thus deviations can be found.

The propagator integrals involving drifts show the biggest deviations from the analytical formulae: even for
low-energy ions in an non-up-down-symmetric elliptical equilibrium, drifts cause substantial differences, even
r interpretation of color in this figure, the reader is referred to the web version of this article.
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in the sign for energetic particles (Fig. 6). Thus, for realistic equilibria, the numerical evaluation becomes
essential.

3.3. Landau integrals

As mentioned before, the kinetic data are given numerically on a E � K-grid. The question now arises how
to interpolate or spline this data in order to carry out the resonance integrals x� x�=x� xD � kxt e.g. in
Eqs. (14) and (15). There are many difficulties connected with this task:
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 One typical application of the code is to determine stability boundaries. That means that for these calcu-
lations the ratio of damping rate or growth rate c to the real frequency x is very small and can be both
positive and negative. If now a resonance condition is met the denominator becomes very small and a spe-
cial Cauchy principal integral algorithm [32] for a near singular function has to be used. Many evaluations
of the integrand have to be made.

 Negative imaginary parts of the denominator require the determination of the residual:
Fig. 7.
trappe
Z Kmax

0

h dK ¼ P
Z Kmax

0

h dKþ 2pihðKzÞðK� KzÞjK!Kz
: ð17Þ
Here, Kz is the pole in the extended complex K-plane. Numerically, this problem is extremely difficult
because either derivatives of the denominator or numerical cancellation of K� Kz have to be carried
out.

 There were predictions about relatively high damping rates for TAE modes at JET [19]. Therefore, any

algorithm applied has to be correct also for large imaginary parts. Often the exact position of the pole is
not taken into account, but it is rather assumed that the pole lies on the axis.

 The trapped-passing boundary has to be represented accurately because especially barely trapped electrons

and fast ions are often in resonance with the modes under investigation.

It was found that rational interpolation solves all the problems mentioned above: applying the Thacher–
Tukey algorithm [31], the denominator is written as
DðKÞ ¼ icþ eDðKÞ ¼ icþ a0ðK� a1ÞðK� a2Þ
ðK� a3ÞðK� a4Þ
with real coefficients a0; . . . ; a4. In order to include c one solves a simple quadratic equation which yields:
DðKÞ ¼ c0ðK� c1ÞðK� c2Þ
ðK� a3ÞðK� a4Þ

;

where c0; c1 and c2 are now complex. This expression interpolates D sufficiently, also close to the trapped-pass-
ing boundary because it allows for a singularity there (error below 2%, see Fig. 7), is easy and fast to evaluate,
is trivially continued into complex plane and allows an analytical cancellation of the singularity in the residual
term:
2pi
gðz;K; tÞðK� a3ÞðK� a4Þ

c0ðK� c2Þ
� ðK� c1Þ
ðK� c1Þ

jK!c1
:

The singularity c2 lies out of the integration range.
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As a test and benchmark case, the Landau damping problem is solved with this rational interpolation
technique:
Fig. 8
c=x ¼

Fi
2p
Z

dv?v?

Z
dvk

oF 0

oE
x

x� vkkk
¼ n

T
fZðfÞ ð18Þ
with
f ¼ x

kkvth

ffiffiffi
2
p ; vth ¼

ffiffiffiffiffiffiffiffiffi
T =m

p

and
ZðfÞ ¼ 1ffiffiffi
p
p

Z 1

�1

due�u2

u� f
¼ 2ie�f2

Z if

�1
dte�t2 ¼ i

ffiffiffi
p
p

e�f2ð1þ ErfðifÞÞ:
Fig. 8 shows that the analytical result as given by formula (18) is very well recovered by the numerical inte-
gration using the rational interpolation technique described above.

Having done this rational interpolation in K for each energy point, the location of the resonance is known
accurately (see Fig. 9). This information is needed for the Cauchy principal value integration and furthermore
it allows to re-adjust the energy grid.
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For a typical test equilibrium (the exact parameters are shown in the radiative damping benchmark) the
lines of resonance in velocity space are shown in Fig. 9 for thermal electrons (left) and a-particles (right).
The frequency chosen is the TAE frequency. There are no resonances with the background ions in this case.
Therefore, for the ions the lowest order solution for hi is sufficient and no integration over velocity space
has to be performed. One can see that for circulating electrons there is a k = 0 resonance due to the match-
ing of x and xD and two sideband resonances due to k � 1. There are also contributions from trapped elec-
trons. For the a-particles only co-passing and trapped resonances are shown. In order to determine if these
resonances are stabilising or destabilising, one has to look at the combination of signs of oF 0=oE and
oF 0=or (contained in x*).

It has been found that a 40 by 40 grid in velocity space (K� E) is sufficient for the background species,
whereas a 40 by 60 grid is needed for fast particles. All the integrations are independent of each other and
therefore were parallelised. On a 16-CPU, 3.4 GHz Linux cluster with 5 coupled poloidal harmonics, 3 species,
10 bounce harmonics and 100 radial grid points, these integrations take about 5 min.

3.4. Eigenvalue solver

As mentioned above, the problem is non-linear in the eigenvalue. Therefore, a combination of several algo-
rithms is applied for solving:


 As described in Ref. [3] , the smallest eigenvalue eiðxÞ of the total (square) matrix Mij has to be identified
and by using a Newton iteration, eiðxÞ ¼ 0 has to be found. Then x is also an eigenvalue of the whole
determinant DetðxÞ. This method works if the eigenvalue is guessed sufficiently accurate. Otherwise, the
smallest ei can jump between different roots.

 If the eigenvalue is not known well enough, a Nyquist contour integration method [28–30] is applied: a ser-

ies of 8 up to 64 points on a circle around the guess are evaluated. Integrating along this contour gives the
residual, that allows to determine how many roots can be found where within the contour. This algorithm
seems to work relatively reliable, however the cost for typically 32–64 evaluations of the determinant is rel-
atively high.

 As described in [2], the antenna version of the code can be employed, to find the approximated eigenvalues

of the system. Usually, the antenna-result is an excellent guess and only 8–16 points are needed for full con-
vergence with the Nyquist solver.
4. Benchmarks and results

4.1. MHD-limit

The benchmarks carried out in this section are all TAEs. These modes attract great interest and concern
when the stability of a burning tokamak plasma is predicted. It was shown numerically and analytically
how toroidal geometry breaks up the continuous Alfvén spectra, generates gaps and permits global modes
within these gaps. These global modes can be driven unstable by energetic particles if the mode frequency
is close to either the transit, bounce or drift frequency of the energetic particles.

For a series of circular, numerical HELENA-based equilibria [26] with q0 ¼ 1:05, a ¼ 0:9 m (minor
plasma radius), B0 ¼ 5 T, nðsÞ ¼ n0 ¼ 5� 1019 m�3 where R0 (i.e. the aspect ratio) varies between 3 m
and 5 m, the mode frequencies for the even and the odd TAE mode are compared: LIGKA in the
MHD-limit and CASTOR show perfect agreement (see Fig. 10). The gap size scales linearly with
� ¼ a=R0 as predicted theoretically [14]. Also the mode structures, shown in Fig. 11 for the case
R0 ¼ 4 m, are very similar to each other. The difference for the m = 3 component might be due to the fun-
damental difference of the models in CASTOR and LIGKA. However, KIN2DEM [3] shows the same
mode ratio as LIGKA.

For the following kinetic test cases always a successful comparison with CASTOR in the MHD limit has
been carried out.
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4.2. Hot particle drive

Now kinetic modifications of the TAE mode are investigated. In order to do so a population of super-ther-
mal Maxwellian hydrogen ions is added to the system. The parameters for this third species are chosen to be:
phot ¼ pð0Þe�w=0:09
with a constant temperature profile T h. Following Qin’s choice [3] for the temperature of the hot ions at the
magnetic axis, vth=hot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T hot=0=m

p
is varied over the interval
0:5 < vth=hot=vA < 1:5;
and the poloidal bhot=0 ¼ 2l0phot=0=Bh=a at the magnetic axis is chosen as 1. The background temperature is set
to:
T i ¼ T e ¼
1

2
ð1� wÞ2 keV:
The results for this case are shown in Fig. 12: the growth rate increases with the fast particle velocity and the
real part of the frequency is shifted. The results obtained with LIGKA agree reasonably well with other codes
which are capable of dealing with fast particle effects in different approximations: the red diamonds in Fig. 12
represent CAS3D3K results [33]. CAS3D3K is a perturbative kinetic MHD code based on CAS3D [34,35]
which is a linear, ideal, three-dimensional MHD code, here applied in the 2d tokamak geometry limit. The
fast particle treatment of CAS3D3K is based on a drift-kinetic description with zero banana orbit width.
When the banana width is also neglected in LIGKA (black squares), an acceptable agreement of both codes
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is found. The remaining discrepancy can be attributed to the fact that Ek and FLR-effects are missing in
CAS3D3-K. When the finite orbit widths are switched on in LIGKA (green triangles), the growth rate de-
creases considerably, especially for higher vth=hot. It is even smaller than predicted by KIN2DEM (solid line),
which uses a Taylor expansion in the banana width. This also agrees with the fact that for large banana
widths, the Taylor expansion becomes inaccurate and underestimates the stabilising influence.

4.3. Mode damping

In the test case above the fast particle drive exceeded by far the damping effects. However, in order to pre-
dict stability limits, the background damping has to be understood. Therefore, three main damping mecha-
nisms are now investigated: Landau damping, continuum damping and radiative damping. Collisional
damping cannot be considered with the present version of LIGKA.

4.3.1. Landau damping
As seen in Fig. 9 there are typically resonances of electrons with the TAE-mode. For a Maxwellian back-

ground distribution function this means that the mode is Landau damped.
Based on the JET limiter discharge #42979@10.12s with B0 ¼ 3:53, R0 = 2.96 m, q0 = 0.87, a = 1.0 m,

n0 = 3.727 · 1019 and n = 1 with the density, temperature and q-profile given in Fig. 13 the damping rate of
the TAE mode in the m = 2,3 gap is calculated. Fig. 14 shows the benchmark of LIGKA, CAS3D-K and
analytical formulae in form of a mass isotope scan as performed in JET experiments [19]. The variation of
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isotope mass changes vA �
ffiffiffiffiffiffiffiffiffiffi
1=mi

p
and also the damping rate c=x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbeme=miÞ

p
[16]. Acceptable agree-

ment is found. The differences however between CAS3D-K and LIGKA can be contributed to the missing
of Ek and/or background FLR effects in the drift-kinetic CAS3D-K (although the non-ideal parameter k
which controls the radiative damping, is relatively small in this case). The modes structure is found to
be an almost pure TAE mode and no mode conversion in the plasma centre was obtained. The damping
rate is roughly an order of magnitude lower than the PENN prediction and the measured damping rate
[19]. The scaling with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=miÞ

p
however is reproduced. The reason for this difference might be the following

one: PENN solves a sixth order differential equation (fast compressional wave is kept) whereas LIGKA
solves a fourth order system (fast wave is filtered out by keeping Ak only). In the TAE frequency range
with almost pure shear Alfvén wave physics, the fast wave plays a vanishing role. However, it is known
that a sixth order system allows spurious solutions which are very hard to control, especially at the mag-
netic axis. Thus although LIGKA captures not the same comprehensive physics as PENN it is far better
suited to the TAE damping problem due to its 1-d finite element discretisation and Fourier decomposition
in the other two coordinates. The lack of a vacuum region in LIGKA cannot explain the crucial difference:
PENN identifies mode conversion in the plasma centre as the most important damping mechanism. How-
ever, in order to further validate LIGKA with experimental data, LIGKA is about to be extended with a
vacuum region.

4.3.2. Continuum damping at the edge

When comparing with experimental data it has to be kept in mind that there is a relatively high uncertainty
in the measured edge density profiles. Therefore, it cannot be distinguished reliably if the gap is open or closed.

If the density at the edge is slightly changed within the experimental error bars (see dashed line in Fig. 13)
the gap is closed at the edge and the mode hits the continuum. The eigenfunction is shown in Fig. 15. On can
see a coupling to the KAW wave very close to the edge. The damping rate increases significantly to 0.7%. That
means that damping at the plasma edge is found to be the dominant damping mechanism, in agreement with
Ref. [22].

The maximum value of k?.i � 0:28. Thererfore, the FLR expansion is justified here.
It has to be kept in mind that LIGKA is a fixed boundary code with no vacuum region. Therefore, some

important physics at the plasma-vacuum boundary might be missed. LIGKA has to be improved in this
respect in order to determine if the discrepancy to other codes and the experiment is due this simplifiction
at the edge.

Furthermore, the present version of LIGKA cannot deal with X-point configurations. Since there is a rel-
atively strong dependence on the edge details it is expected that the damping rates change quantitatively due to
a stronger coupling to neighbouring poloidal harmonics near the plasma edge resulting most probably in
rather higher than lower damping rates. However, it will not change the qualitative result that the main damp-
ing comes from the edge region and not from mode conversion in the plasma centre.



Fig. 15. Eigenfunction for the closed gap case (left) and magnified edge region (right).
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4.3.3. Radiative damping

The last damping mechanism investigated is radiative damping. It is controlled by the non-ideal parameter
k

Fig. 16
calcula
k ¼ 4mS.i

rm�̂3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
þ T e

T i

s
ð19Þ
with S ¼ rq0ðrÞ=qðrÞ being the magnetic shear, �̂ ¼ 5rm=2R0 and rm the radial location of the gap surface. If k
increases the coupling of the TAE mode and the KAW increases and short wavelength features of the KAW
‘tunnel’ into the TAE. This tunnelling takes place at the location of the gap, where the TAE is close to the
continuum.

For benchmarking, an equilibrium based on the JET discharge #38573@5.0s with the profiles described in
Ref. [22] is chosen. By changing the ion temperature, the ion gyroradius is varied from 1 mm up to 5.5 mm.
The resulting damping rate is plotted in Fig. 16. For comparison the damping rate calculated with a simple
code based on the reduced kinetic model (RKM) [22] are also shown. For this test case the equilibrium
was simplified to a shifted-circle geometry.

Very good agreement was found, despite the fact that the RKM model also includes a simple model for
collisional damping which is missing in LIGKA. This is in agreement with the estimate that collisional damp-
ing gives only relatively small correction in this case.

Three corresponding eigenfunctions are shown in Figs. 16 and 17 for the gyroradii . = 1 mm, 3 mm (exper-
imental case) and 5.5 mm. It can be seen how the KAW tunnels with increasing gyroradius more and more
into the TAE near the gap location. A similar behaviour, however less strong, was found with the RKM code.
This fact may explain the slightly stronger dependence of the damping rate on the gyroradius found by
LIGKA.
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Fig. 17. Eigenfunction calculated by LIGKA for . = 3 mm (left) and . = 5.5 mm (right).
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For the mode in Fig. 17, the maximum value of k?.i � 0:2. Thus also here the FLR expansion is well
justified.

In addition to the previous section, it should be mentioned that in this case the gap is open. Both codes were
used to calculate a damping rate also for a closed gap situation by slightly changing the density profile at the
edge. The RKM code found a considerable higher damping rate 0.5% [22] and also LIGKA found 0.72%.
Again, in agreement with previous statements, damping at the edge is found to be dominant for a closed gap.

5. Conclusions

After numerous improvements and extensions since the first version in 2003, LIGKA is now benchmarked
against analytical results and other numerical codes in the most important limits and for all key-physics ele-
ments: the ideal- MHD limit, the reduced kinetic model, fast particle drive, Landau damping, continuum
damping and radiative damping.

The benchmarks with PENN were not successful so far. This could have the following reasons: unlike
PENN, LIGKA is no antenna-code with a proper vacuum region. Therefore, LIGKA might miss some impor-
tant phyiscs at the plasma edge. Furthermore, LIGKA looks for eigenfunctions of a certain plasma configu-
ration whereas PENN has driven modes as solutions. It has to be investigated if these two different concepts
contribute to the difference in the results. An extension of LIGKA into a proper antenna code will help to
clarify this point.

However, for open gap cases where edge effects are not important, LIGKA cannot find any mode conver-
sion in the plasma centre. This result is in agreement with analytical estimates, CASTOR-K and the ‘reduced
kinetic model’ code and therefore contradicts the PENN results. As pointed out at the end of chapter (4.3.1),
LIGKA’s physics model is better adopted to shear Alfvén problems and therefore its equations are easier to
solve numerically. Since also good agreement with analytical and simple kinetic models in the appropriate lim-
its is found, LIGKA’s results should be more robust and reliable for this particular problem.

As occasionally indicated before, there are numerous improvements of LIGKA on the way: the most
important improvements will be an extension to the low-frequency-sound-wave regime, an extension for
the vacuum region and a parallel matrix solver to allow for more poloidal harmonics as required for medium
and high-n modes.
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